What Nurse Practitioners Should Know About Recognizing and Treating Trigeminal Neuralgia

Robert E. Salsameda, MPA, MSN, RN, NP-C, CRNFA, CNRN
Neurosurgical Nurse Practitioner
MemorialCare Medical Group: Neurosurgery
UCLA Extension, RN First Assistant Programs
Course Chair
Objectives

- Recognize and describe the symptoms, anatomy & physiology of trigeminal neuralgia (CN V)
- Describe treatment and outcome of TN including medication and surgery
- Apply knowledge from a case study presentation and review NP assessment & intervention for the care of patient with TN
Trigeminal Neuralgia

• The goal of this presentation is to provide information to nurse practitioners regarding diagnosis and treatment modalities for a problem that is life altering.

• Patients will present to their advanced practice providers for help in pain management before the disease is diagnosed.

• Early diagnosis will have major implications on quality of life (QOL).

The Surgical Treatment of Trigeminal Neuralgia: Overview and Experience at the University of Florida
Journal of Neuroscience Nursing, AANN. Volume 41. No 4: August 2009; pp 211-214
Incidence of Trigeminal Neuralgia
aka *Tic douloureux*

- Estimated at 12.6 per 100,000 person years
- Mean years at diagnosis 51.5 years
- Women are more often affected than men, in a ratio ~2.5:1
Anatomy of Trigeminal Nerve (CN V) has three parts.

The trigeminal nerve emerges from the pons, passing across the petrous ridge to become the gasserian ganglion which in turn separates into the ophthalmic, maxillary, and mandibular divisions.

Hickey, 2009
CN V Anatomy

Key
- Ophthalmic nerve (CN V₁)
- Maxillary nerve (CN V₂)
- Mandibular nerve (CN V₃)

Motor root of CnV
Sensory root of CnV
Lateral view: skin, subcutaneous tissue, and a branch to the dura mater

- Trigeminal ganglion
- CN V1 for the ciliary ganglion
- CN V2 for the pterygopalatine ganglion
- CN V3 for the submandibular and otic ganglia
 - CN V3 is also motor to four pairs of muscles: temporal, masseter, and the two pterygoid muscles
Symptoms of trigeminal involvement

- Pain: Marked if gasserian ganglion or peripheral branches are involved
- Loss of Sensation: Over sensory distribution; corneal anesthesia early.
- Dissociate Anesthesia: Loss of pain but not touch may be noted when the spinal tract of the fifth nerve is involved (eg, in syringobulbia).
- Paresthesia: Occasionally seen in anemia and in nervous and hysterical patients.
- Paralysis: Paralysis of muscles of mastication, with deviation of jaw to affected side.
- Reflexes: Loss of jaw jerk, sneeze, and lid, conjunctival, and corneal reflexes.
- Hearing: impaired hearing due to paralysis of tensor tympani.
- Trismus (Lockjaw): tonic spasm of muscles of mastication in rabies, tetany, tetanus, epilepsy, and hysteria.
- Trophic and Secretory Disturbances: Herpes simplex, neurokeratitis, dryness of nose (causes anosmia, as moisture is necessary to smell), ulcerations of face, and loss of teeth.

Chusid, J.G. Correlative Neuroanatomy & Functional Neurology, 18th ed
Symptoms: Hallmark features

- Sharp and lancinating pain
- Paroxysmal attacks
- Pain in the distribution of the trigeminal nerve
- Pain triggered by non-noxious stimuli
- Lack of sensory loss
Trigeminal neuralgia is a clinical diagnosis

• Based on the hallmark features it is imperative that the NP ask the following questions:
 – Does the pain have a lancinating quality?
 – Is the pain constant?
 – Is it in the distribution of the TN?
 – Are there triggers?
 – Is there any sensory loss?
 – Does the patient fit the proper demographic category?
Etiology

- Compression of trigeminal nerve (TN) by anomalous arteries or veins of posterior fossa, compressing trigeminal root
- Etiologic classification:
 - **Idiopathic** (classic)
 - **Secondary**: Cerebellopontine angle tumors (e.g., meningioma); tumors of CN V (e.g., neuroma, vascular malformations), trauma, demyelinating disease (e.g., multiple sclerosis [MS])
Pathophysiology

• Demyelination around the compression site seems to be the mechanism by which compression of nerves leads to symptoms.

• Demyelinated lesions may set up an ectopic impulse generation causing erratic responses: Hyperexcitability of damaged nerves and transmission of action potentials.
Clinical Tests

• Sensation: With wisps of cotton, pinpricks, and warm or cold objects.

• Reflexes: Corneal (wink), conjunctival, jaw jerk, sneeze.

• Motor Status: ability to chew; palpation of masseter and temporal muscles when the jaws are clamped tightly together. Wasting of the masseter muscles and deviation of the mandible to one side on attempting to lower the jaw against resistance are noted when present.
Attack triggers of TN

- Touching the skin lightly
- Washing
- Shaving
- Brushing teeth
- Blowing the nose
- Drinking hot or cold beverages
- Encountering a light breeze
- Applying makeup
- Smiling
- Talking
Imaging

- Indicated in all 1st-time presenting patients to r/o secondary causes

- Initial approach
 - MRI vs. CT scan: MRI, with and without contrast, offers more detailed imaging and is preferred, if not contraindicated
 - Routine head imaging identifies structural causes in up to 15% of patients
 - No positive findings are significantly correlated with diagnosis
Pathological Findings

- Trigeminal nerve: inflammatory changes, demyelination, and degenerative changes

- Trigeminal ganglion: hypermyelination and microneuromata
Differential diagnosis (DDx)

- Other forms of neuralgia usually have sensory loss. Presence of sensory loss nearly excludes the diagnosis of TN (if younger patient, frequently multiple sclerosis MS)
- Neoplasia in cerebellopontine angle
- Vascular malformation of brainstem
- Demyelinating lesion (MS is diagnosed in 2-4% of patients with TN)
- Vascular insult
- Migraine, cluster headache

- Giant cell arteritis
- Postherpetic neuralgia
- Chronic meningitis
- Acute polyneuropathy
- Atypical odontalgia
- SUNCT syndrome (short-lasting, unilateral, neuralgiform pain with conjunctival injection, and hearing)
Pharmacologic Treatment
Medication (Drugs)

First Line:
- Carbamazepine (Tegretol) start at 100-200 mg po bid; effective dose usually 200 mg qid; max dose 1,200 mg/day
- 70-90% of patients respond initially
- Most common SE: Sedation
- Oxcarbazepine (Trileptal) start at 150-300 mg bid; effective dose usually 375 mg bid; max dose 1,200 mg/day
- Efficacy similar to carbamazepine
- Decreases serum sodium
- Most common SE: Sedation

Second Line
- Nonantiepileptics (NAED): Insufficient evidence from randomized, controlled trials to show significant benefit from NAEDs in TN
- Phenytoin (Dilantin) 300-400 mg/d
- Baclofen (Lioresal) 10-80 mg/d; start at 5-10 mg tid with food
- Gabapentin (Neurontin) start at 100 mg tid or 300 mg at bedtime; can increase dose up to 300-600 mg tid-qid
- Lamotrigine (Lacmictal) titrate up to 200 mg bid: SE 10% experience rash
- Chlordesin cationate (Maolate) 800-2400 mg/d (as an adjunct to phenytoin and/or carbamazepine) SE: Drowsiness
- Antidepressants, including amitriptyline, fluoxetine, trazadone used especially with AEDs; particularly effective for atypical forms of TN
- Clonazepam (Klonopin)
- Sumatriptan (Imitrex) 3mg SC reduces acute symptoms
- Capsaicin cream topically
- Botulinum toxin injection into zygomatic arch
- Valproic acid (Depakene, Depakote)
Treatment tenets

- Earlier surgical intervention is better
- Microvascular decompression (MVD) is the best surgical treatment
- Elderly patients can be good candidates for MVD
- Stereotactic radiosurgery (SRS) is a promising first-line surgical option
Complementary therapies (CAM)

• Some patients may try other complementary therapies in addition to drug therapy before or instead of surgery.

• Some therapies include:
 – Acupuncture
 – Biofeedback
 – Vitamin therapy
 – Nutritional therapy
 – Electrical stimulation of the nerves
Relative risks of percutaneous procedures and MVD of CN V for TN

- **Percutaneous procedures**
 - Altered facial sensation
 - Corneal hypesthesia
 - Corneal ulceration
 - Dysesthesia
 - Anesthesia dolorosa
 - Cranial nerve palsy
 - Brain abscess

- **MVD**
 - Death
 - Cerebellar hematoma
 - Stroke
 - Cranial nerve palsy
 - Fourth
 - Seventh
 - Eighth
Percutaneous Techniques

Thermal Rhizotomy
Glycerol Rhizotomy
Balloon Compression
Stereotactic Radiosurgery
Sub-occipital craniectomy for microvascular decompression (MVD) of CN V
Surgical positioning for approach

- Mayfield tongs
- Abdominal binder
- Sequential stockings
- CVP line & Precordial doppler, TEE
- Pillows and flexing of LEs
Exposure of CN V

- Greenberg retractor
- Teflon pledgett
- Cottonoids
- Micro instruments
- Duragen
- Evicel
Microvascular decompression (MVD)
Post op & Follow up Care

- Admit to Neuro ICU
- Routine neuro assessments esp; corneal reflex, EOMs, symmetric facial movement
- HOB 30 degrees
- Analgesics (IV): MSO4, Dilaudid, Ofirmev, PCA, & muscle relaxants; anti-emetics
- Resume Carbamazepine
- Assess sense of taste and the motor component of CN V
- Diet liquid → regular
- Return to office/clinic ~ 10 days post op
- Wound evaluation
- Staple removal
- Resume activities
- Wean off carbamazepine?
Conclusions

• Trigeminal neuralgia (TN) is a disease classically characterized by paroxysmal attacks of lancinating pain in the distribution of the TN that are triggered by non-noxious stimuli and that are not associated with sensory loss.

• It is a clinical diagnosis with several surgical options if the disease becomes medically refractory.

• Neurosurgical treatments include:
 – Percutaneous procedures
 – Stereotactic radiosurgery (SRS)
 – MVD
Summary

- Patients with trigeminal neuralgia commonly are seen in various practice settings; therefore, an understanding of the underlying disease process and early intervention is beneficial.

- The symptomatology patients experience with trigeminal neuralgia can significantly affect their lifestyle and QOL.

- **NPs** are pivotal to assess, intervene, educate, reassure, and advocate for patients with trigeminal neuralgia.
It ain’t rocket science! NP power

- Look at your patient
- Listen to what they are saying
- Ask an unscripted question

Better: A surgeon’s notes on performance: Atul Gawande, MD; 2007

- Make your referrals to a neurologist and/or neurosurgeon.
Neuroscience Resources

- Moore, KL, Dailey, AF. *Clinical Oriented Anatomy*, Fourth edition, Baltimore, Lippincott Williams & Wilkins 1999
UCLA Extension
RN First Assistant Program

- (310) 825-7093
- uclaextension.edu/healthsci