Chronic Hepatitis C: An Update on Screening, Evaluation, and Management

Donald Gardenier, DNP, FNP-BC, FAANP, FAAN
Assistant Professor and
Clinical Program Director

Icahn School of Medicine at Mount Sinai
New York, NY
Conflict of Interest Disclosure

Having an interest in an organization does not prevent a speaker from making a presentation, but the audience must be informed of this relationship prior to the start of the activity and any potential conflict must be resolved. In order to ensure balance, independence, objectivity, and scientific rigor at all programs, the planners and faculty must take full disclosure indicating whether the planner, faculty, or content specialist and/or his/her immediate family members have any relationships with sources of commercial support, e.g. pharmaceutical companies, biomedical device manufacturers and/or corporations whose products or services are related to pertinent therapeutic areas. All planners, faculty and content specialists participating in CE activities must disclose to the audience:

A. Any relationship with companies that manufacture products used in the treatment of the subjects under discussion

B. Any relationship between the planner, faculty, or content specialist and commercial supporter(s) of the activity

C. Any intent to discuss the unlabeled or investigational use of a commercial product, or the use of a product not yet approved for the purpose under discussion.

☑️ I have no conflict disclosures
☑️ I will discuss therapies under investigation
Presentation Overview

1. Epidemiology
2. Emerging trends for screening
3. Evaluation and staging
4. Treatment
5. Follow up
6. Outlook
Presentation Overview

1. Epidemiology

2. Emerging trends for screening
3. Evaluation and staging
4. Treatment
5. Follow up
6. Outlook
Global Preventable Death Rates

Caused by viruses:
- HIV
- HBV + HCV
- Measles
- RSV, Rota
- Flu
- Dengue
- HPV
- West Nile
- SARS
- Ebola
- Polio
- Hanta

Other causes:
- Tobacco
- Malaria
- Road accidents
- Non-HIV TB
- Hospital infection
- Suicide
- vCJD

Source: WHO 2003
Annual Age-Adjusted Mortality Rates: Hepatitis C Virus and HIV infections

Natural History of Hepatitis C

Estimates by Year: HCV Prevalence and Cirrhosis

Prevalent HCV: All Cases

Chronic HCV

Cirrhosis

Acute HCV

Davis. Gastroenterology. 2010
Hepatitis C is a disease of marginalized groups

Rates of infection:

US population 2 - 3%

- IDU > 10 years of use 90%
- IDU < 10 years of use 50%
- Homeless persons 35%
- Prisoners 29%
- Severely mentally ill 19%

<table>
<thead>
<tr>
<th>Group</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Percentage (%)</td>
<td>Rate per 100,000 people</td>
</tr>
<tr>
<td>Overall</td>
<td>13,932</td>
<td>n/a</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8,952</td>
<td>64.3</td>
</tr>
<tr>
<td>Female</td>
<td>4,866</td>
<td>34.9</td>
</tr>
<tr>
<td>Unknown</td>
<td>114</td>
<td>0.8</td>
</tr>
<tr>
<td>Age (in years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–19</td>
<td>152</td>
<td>1.1</td>
</tr>
<tr>
<td>20–29</td>
<td>875</td>
<td>6.3</td>
</tr>
<tr>
<td>30–39</td>
<td>1,746</td>
<td>12.5</td>
</tr>
<tr>
<td>40–49</td>
<td>3,437</td>
<td>24.7</td>
</tr>
<tr>
<td>50–59</td>
<td>4,793</td>
<td>34.4</td>
</tr>
<tr>
<td>60–69</td>
<td>1,819</td>
<td>13.1</td>
</tr>
<tr>
<td>70–79</td>
<td>718</td>
<td>5.1</td>
</tr>
<tr>
<td>80+</td>
<td>364</td>
<td>2.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>28</td>
<td>0.2</td>
</tr>
</tbody>
</table>
U.S. HCV Epidemiology

Liver Transplantation: Supply vs Demand

- Waiting List
- Additions to List
- Deceased Donors
- Liver Transplants

Year: 1992-2001

- 1992: 0
- 1993: 2000
- 1994: 4000
- 1995: 6000
- 1996: 8000
- 1997: 10000
- 1998: 12000
- 1999: 14000
- 2000: 16000
- 2001: 18000

- 1992: 0
- 1993: 2000
- 1994: 4000
- 1995: 6000
- 1996: 8000
- 1997: 10000
- 1998: 12000
- 1999: 14000
- 2000: 16000
- 2001: 18000

- 1992: 0
- 1993: 2000
- 1994: 4000
- 1995: 6000
- 1996: 8000
- 1997: 10000
- 1998: 12000
- 1999: 14000
- 2000: 16000
- 2001: 18000

- 1992: 0
- 1993: 2000
- 1994: 4000
- 1995: 6000
- 1996: 8000
- 1997: 10000
- 1998: 12000
- 1999: 14000
- 2000: 16000
- 2001: 18000

- 1992: 0
- 1993: 2000
- 1994: 4000
- 1995: 6000
- 1996: 8000
- 1997: 10000
- 1998: 12000
- 1999: 14000
- 2000: 16000
- 2001: 18000
Predictions for 2010-2019

- 193,000 HCV deaths
 - 720,700 million years of advanced liver disease
 - 1.83 million years of life lost

- $11 billion in direct medical care costs

- $21.3 and $54 billion societal costs from premature disability and mortality

CDC; Wong et al. 2010
Presentation Overview

1. Epidemiology

2. Emerging trends for screening

3. Evaluation and staging
4. Treatment
5. Follow up
6. Outlook
Hepatitis C is Under-Diagnosed

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number Infected</th>
<th>Undiagnosed %</th>
<th>Diagnosed %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>1,000,000</td>
<td>~21%</td>
<td></td>
</tr>
<tr>
<td>HBV</td>
<td>2,000,000</td>
<td>~65%</td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td>3,000,000</td>
<td>~75%</td>
<td></td>
</tr>
</tbody>
</table>

HBV=hepatitis B virus; HCV=hepatitis C virus; HIV=human immunodeficiency virus.
Hepatitis C Risk Factors

Ever injected drugs, even once

Medical conditions associated with HCV, including:
- HIV
- Hemophilia if received clotting factor (prior to 1987)
- Hemodialysis
- Unexplained abnormal aminotransferase levels

Transfusion or organ transplant (prior to July 1992)

Children born to HCV-positive mothers

Health Care Workers: needle stick or mucosal exposure

Current sex partners of HCV-infected individuals
CDC\(^1\) and USPSTF\(^2\) Screening Recommendations for Hepatitis C

In addition to testing adults of all ages at risk for HCV infection, CDC now recommends:

- **Age-based testing:** All adults born during 1945–1965 should receive one-time antibody testing for HCV without prior ascertainment of HCV risk.

- **Referral to care:** All persons with identified HCV infection should be referred to appropriate care and treatment services for HCV infection and related conditions.

- **Alcohol screening:** All persons identified with HCV infection should receive a brief alcohol screening and intervention as clinically indicated.

\(^1\) Centers for Disease Control

\(^2\) US Preventive Services Task Force
Hepatitis C Virus Testing (Chapter 425 of the Laws of 2013)
This new law requires a hepatitis C virus screening test to be offered to all patients born between 1945 and 1965 who are receiving health services as a hospital inpatient or receiving primary care services and applies to physician, physician assistant, or nurse practitioner.

The law further requires that the health care provider refer a patient who receives a positive screening test to another provider to receive confirmatory testing and follow-up care.

In effect as of January 1, 2014
Presentation Overview

1. Epidemiology
2. Emerging trends for screening

3. Evaluation and staging

4. Treatment
5. Follow up
6. Outlook
HCV: Pre-treatment Evaluation

▶ Complete medical history with emphasis on:
 – Hepatitis C risk factors, dates of exposure, prior treatment and outcomes, extent of liver injury
 – Detailed alcohol and substance use history
 – Cardiovascular disease and risk factors
 – Thorough psychiatric history with focus on treatment readiness
 – Diabetes history and risk factors including dyslipidemia and obesity
 – Age and gender appropriate cancer risk and screening history
Labs / Imaging

- HCV-specific
 - RNA/quant
 - genotype

- Liver Labs
 - Complete blood count
 - Complete fasting chemistry
 - Alpha Feto Protein
 - PT/INR
 - Vitamin D

- Medication-related
 - TSH and thyroid antibodies
 - Renal panel
 - Serum uric Acid

- Shared risk factors
 - Hep A and B panels
 - HIV Ab
 - RPR

- Comorbidities
 - Hgb A1C
 - Fasting lipids

- Imaging
 - Abdominal ultrasound
 - CT or MRI
 - Biliary imaging

- Fibrosis
 - Biopsy
 - Fibroscan
 - Serum markers
Liver Biospy

• Previously:
 • Most patients routinely biopsied
 • Rationale: delay treatment in early stage disease
 • Not everyone progresses to ESLD
 • Risk/benefit ration of previous treatments

• Current rationale:
 • No longer routine
 • Risk and cost associated with the biopsy itself
 • Demographics suggest more will progress
 • Safer and more efficacious treatments
 • No longer a barrier
 • More challenging to evaluate fibrosis
FIB-4, APRI, FibroSure™

- Derived indicators of cirrhosis
- All have limitations
- FIB-4 Score:
 - \((\text{AGE} \times \text{AST}) / (\text{platelets} \times \sqrt{\text{ALT}})\)
 - >3.25 sensitive and specific for significant fibrosis
- APRI = AST: Platelets ratio
 - \(\text{AST}/\text{ASTULN}/\text{Platelets}\)
 - \(\geq 1\) significant fibrosis likely
- Fibrosure
 - >72 significant fibrosis likely
Transient Elastography

• Measures liver stiffness
• Non-invasive
• Office procedure
• Score correlates with degree of fibrosis
• More sensitive at high and low ends

Source: www.echosens.com
Presentation Overview

1. Epidemiology
2. Emerging trends for screening
3. Evaluation and staging

4. Treatment

4.1. Follow up
4.2. Outlook
Treatment Outcomes: Virallogical Response

Null Response
Partial Response
Relapse
SVR
ETR

RVR: rapid virological response
eRVR: extended rapid virological response
EVR: early virological response
ETR: end of treatment response
SVR: sustained virological response

History of Treatment for Chronic HCV

Cure Rate*
- 0%
- 20%
- 40%
- 60%
- 80%
- 100%

Year
- 1991
- 1998
- 2001
- 2011
- 2013
- 2014+

IFN
- IFN + RBV
- PegIFN + RBV
- TVR or BOC + pegIFN + RBV
- SOF or SMV +/- pegIFN +/- RBV
- All-Oral DAA’s

*Cure rates based on data from clinical trials
Real World Efficacy and Costs per SVR of TVR-Based Triple Therapy

Review of TVR-based triple therapy in 147 patients at the Mount Sinai Medical Center

- 44% of patients achieved SVR
- Almost half of all costs (45%) were spent on patients who did not achieve an SVR
- Cost per SVR is substantially higher when you consider AEs, premature DC, and virologic failures

The median cost per SVR was $188,859

Bichoupan K, et al. AASLD 2013. Washington, DC. Oral #244
Cost Per Cure of Sofosbuvir vs PIs:
- Treatment-Naïve and Experienced
- Genotype 1

<table>
<thead>
<tr>
<th>Treatment Type</th>
<th>Treatment</th>
<th>Cost Per Cure</th>
<th>Percentage Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Naïve</td>
<td>BOC + PR</td>
<td>$11,641</td>
<td>(-10%)</td>
</tr>
<tr>
<td>Treatment Naïve</td>
<td>TVR + PR</td>
<td>$19,847</td>
<td>(-17%)</td>
</tr>
<tr>
<td>Treatment Naïve</td>
<td>SOF + PR</td>
<td>$74,996</td>
<td>(-52%)</td>
</tr>
<tr>
<td>Treatment Experienced</td>
<td>BOC + PR</td>
<td>$58,091</td>
<td>(-40%)</td>
</tr>
<tr>
<td>Treatment Experienced</td>
<td>TVR + PR</td>
<td>$74,996</td>
<td>(-52%)</td>
</tr>
<tr>
<td>Treatment Experienced</td>
<td>SOF + PR</td>
<td>$58,091</td>
<td>(-40%)</td>
</tr>
</tbody>
</table>

AMCP Dossier Data on file, Gilead Sciences December 2013
Cost of Care
USA, per capita, per year

Per capita: $8,6081
Diabetes: $10,8452

1WHO
2Fu et al, Diabetes Care 2009
Cost of Care

USA, per capita, per year

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Hepatitis C:</td>
<td>$24,176</td>
</tr>
<tr>
<td>No cirrhosis</td>
<td>$17,277</td>
</tr>
<tr>
<td>Compensated Cirrhosis</td>
<td>$22,752</td>
</tr>
<tr>
<td>End Stage Liver Disease</td>
<td>$59,995</td>
</tr>
<tr>
<td>HCC</td>
<td>$112,537</td>
</tr>
<tr>
<td>Post-OLT</td>
<td>$145,045</td>
</tr>
<tr>
<td>Transplant + year 1</td>
<td>$575,000</td>
</tr>
</tbody>
</table>

Gordon et al, Hepatology 2012; National Foundation for Transplants
Cost Effectiveness

Cost of SVR

Interferon + ribavirin therapy: $27,876
(medication only)

Cost per SVR:

First generation DAA: $189,0001
Second generation DAA: $136,0002

1Bichoupan et al Hepatology 2014
2Silva et al EASL 2014
Current Medications
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Previous treatment</th>
<th>Cirrhosis?</th>
<th>Treatment options</th>
<th>SOF</th>
<th>Viekira™</th>
<th>Harvoni®</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Naive</td>
<td>No</td>
<td>+ SMV +/- RBV 12 weeks</td>
<td>+ RBV 12 weeks</td>
<td>12 weeks¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>+ SMV +/- RBV 24 weeks</td>
<td>+ RBV 24 weeks</td>
<td>12 weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experienced⁹</td>
<td>No⁷</td>
<td>+ SMV +/- RBV 12 weeks</td>
<td>+ RBV 12 weeks</td>
<td>12 weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes⁸</td>
<td>+ SMV +/- RBV 24 weeks</td>
<td>+ RBV 24 weeks</td>
<td>24 weeks² -or- + RBV 12 weeks</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Naive</td>
<td>No</td>
<td>+ SMV 12 weeks</td>
<td>12 weeks</td>
<td>12 weeks¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>+ SMV 24 weeks</td>
<td>+ RBV 12 weeks</td>
<td>12 weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experienced⁹</td>
<td>No⁷</td>
<td>+ SMV +/- RBV 12 weeks</td>
<td>12 weeks</td>
<td>12 weeks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes⁸</td>
<td>+ SMV +/- RBV 24 weeks</td>
<td>+ RBV 12 weeks</td>
<td>24 weeks² -or- + RBV 12 weeks</td>
<td></td>
</tr>
</tbody>
</table>

¹: Treatment duration for Naive patients.
²: Treatment duration for Experienced patients.

⁷: Cirrhosis status not specified for these cases.
⁸: Treatment option change for experienced patients.

- SOF: Sofosbuvir
- Viekira™: Velpatasvir + Sofosbuvir
- Harvoni®: Ledipasvir + Sofosbuvir

Note: The table provides a summary of treatment options based on genotype, previous treatment status, cirrhosis status, and treatment duration for both Naive and Experienced patients.
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Previous treatment</th>
<th>Cirrhosis?</th>
<th>Treatment options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOF</td>
</tr>
<tr>
<td>2</td>
<td>Naive</td>
<td>No</td>
<td>+ RBV 12 weeks⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>+ RBV 16 weeks⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experienced⁹</td>
<td>No⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes⁸</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>No</td>
<td>+ RBV 24 weeks⁴</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>+ RBV 12 or 24 weeks⁶</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>+ RBV + PEG 12 weeks</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment notes:
1. Consider 8 weeks for HCV RNA<6 million
2. Add RBV if previous failure was a SOF regimen
3. Consider extending to 16 weeks
4. Alternate: add PEG
5. No dasabuvir
6. Alternates: add PEG or SMV (12 weeks)
7. If previously treated with a SOF-containing regimen, consider deferring treatment
8. If previously treated with a SOF-containing regimen consider Harvoni® +/- RBV for 24 weeks
9. If previous failure was a SOF, TVR or BOC regimen, do not use a SOF or Viekira™ regimen

Medication Abbreviations:
BOC = boceprevir
PEG = pegylated interferon
RBV = ribaivirin (weight based dosing)
SMV = simeprevir
SOF = sofosbuvir
TVR = telaprevir

Harvoni® = ledipasvir 90mg + sofosbuvir 400mg
Viekira™/viekira pak™ = ombitasvir 12.5mg + paritaprevir 75 mg + ritonavir 50 mg and dasabuvir 250 mg
Prioritizing Treatment: Highest Priority

• Highest Risk of Severe Complications
• Advanced fibrosis (Metavir F3) or compensated cirrhosis (Metavir F4)
 • Rating: Class I, Level A

• Organ transplant
 • Rating: Class I, Level B

• Type 2 or 3 essential mixed cryoglobulinemia with end-organ manifestations
 • Rating: Class I, Level B

• Proteinuria, nephrotic syndrome, or membranoproliferative glomerulonephritis
 • Rating: Class IIa, Level B
Prioritizing Treatment: High Priority

- High Risk of Complications
- Fibrosis (Metavir F2)
 - Rating: Class I, level B
- HIV-1 coinfection
 - Rating: Class I, Level B
- Hepatitis B virus (HBV) coinfection
 - Rating: Class IIa, Level C
- Other coexistent liver disease (eg, [NASH])
 - Rating: Class IIa, Level C
- Debilitating fatigue
 - Rating: Class IIa, Level B
- Type 2 Diabetes mellitus (insulin resistant)
 - Rating: Class IIa, Level B
- Porphyria cutanea tarda
 - Rating: Class IIb, Level C

Source: www.hcvguidelines.org
Prioritizing Treatment: High Risk of Transmission

- Men who have sex with men (MSM) who engage in high-risk sexual practices
- Active injection drug users
- Incarcerated persons
- Persons on long-term hemodialysis
- HCV-infected women of child-bearing potential wishing to become pregnant
 - Rating: Class IIa, Level C
Presentation Overview

1. Epidemiology
2. Emerging trends for screening
3. Evaluation and staging
4. Treatment

5. Follow up

6. Outlook
Sustained Virologic Response (SVR) Leads to Improved Outcome

- **Viral Eradication**
- **Improved Clinical Outcomes**
- **Improved Liver Histology**

- **Decreased**
 - Decompensation
 - Hepatocellular Carcinoma
 - Mortality

References:
All Cause Mortality Among US Veterans: HCV Ab+ vs Ab-

195,585 HCV Ab+ 43.9* 24*

202,739 HCV Ab-

*Per 1,000 person years

Erogu S, et al. 48th EASL; Amsterdam, Netherlands; April 24-28, 2013. Abst. 453.
SVR Is Associated with Lower Incidence of ESLD, HCC or Death: Results from the HALT-C Trial

SVR Durability with TVR + PegIFN + RVB: EXTEND Study

- 223 patients in the SVR cohort
 - 222 (99.6%) patients had persistent undetectable HCV RNA levels
 - Median of 21 months of follow-up
 - Range: 4.4 to 47.9 months
 - One late relapse
 - patient treated for only 9/12 weeks with TVR
 - All others had durable SVR

Post-Treatment Follow Up

Is the cure durable?
SVR-12, SVR-24
Periodically thereafter

Is there risk for reinfection?
Address any ongoing risk behaviors
Antibodies are not protective

Does the patient know her/his status?
Will retain antibodies

Fibrosis/Cirrhosis?
Pre-treatment fibrosis may not revert
Ongoing risk for HCC, ESLD

Other liver risks?
Fatty Liver
Alcohol
Others

Other medical conditions?
A comorbid population
Presentation Overview

1. Epidemiology
2. Emerging trends for screening
3. Evaluation and staging
4. Treatment
5. Follow up

6. Outlook
Investigational Agents for HCV

- Interferons
- Antiviral agents
- Therapeutic vaccines
- Host target
 - miRNA-122
 - Cyclophilin

Entry

Replication, polyprotein processing and/or assembly

- NS5B polymerase Inhibitors
- NS3 protease inhibitors
- NS5A replication complex inhibitors
- CYP inhibitors
Coming Agents:

<table>
<thead>
<tr>
<th>Agent</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daclatasvir</td>
<td>NDA Submitted</td>
<td>NS5A Inhibitor</td>
</tr>
<tr>
<td>Asuneprevir</td>
<td>NDA Submitted</td>
<td>NS3 Protease Inhibitor</td>
</tr>
</tbody>
</table>
Resources

- Treatment guidelines:
 - www.aasld.org/www.hcvguidelines.org
 - www.easl.eu
- Psychosocial readiness:
 - www.prepc.org
- Medication interactions:
 - www.hep-druginteractions.org
- Screening:
 - www.cdc.gov
- Special Populations:
 - www.hcvcme.com
Thank You