Name That Syndrome!

Catherine J. Goodhue, MN, CPNP
Nurse Practitioner II
Division of Pediatric Surgery

Goodhue
Disclosure

Research Coordinator of an NIH-funded U01 Grant entitled: “Establishment of CHLA’s ChiLDREN (Childhood Liver Disease Research and Education Network) Clinical Center”

Acknowledgement

Pedro Sanchez, MD - Pediatric Geneticist

Goodhue
Objectives

- Discuss characteristics of common genetic syndromes
- Describe diagnostic criteria and/or testing for common genetic syndromes
- Identify current guidelines for primary and specialty care for common genetic syndromes
Name That Syndrome!

• 1 month old female
• Normal birth history
• Some feeding problems
• PE:
 – Small mouth and ears
 – Redundant neck folds
 – Noisy breathing
 – Somewhat hypotonic

Goodhue
Common Physical Features

- Brachycephalic
- Epicanthic folds
- Flat nasal bridge
- Upward slanting palpebral fissures
- Brushfield spots
- Small mouth

- Small ears
- Excessive skin at nape of neck
- Single transverse palmar crease
- Short fifth finger with clinodactyly
- Hypotonia
Newborn Period

- Feeding problems
- 60% have eye disease
- 75% have hearing loss
- ↑ incidence of URI’s; 50-75% have OSA
- 50% have cardiac defects → need echo
- 12% develop obstructive bowel anomalies
- 15% have thyroid disease; 1% congenital
- Hypotonia
- Importance of early intervention
Infancy

• 50-70% develop serous OM
 – Behavioral audiogram at 1 year
• Check for strabismus, cataracts, nystagmus
 – Peds ophthalmology by 6 months of age
• Repeat thyroid function screen at 6 and 12 months then annually
• Routine immunizations – consider Synergis
Early Childhood

• Growth and development
• If unable to visualize TM’s audiogram every 6 months up to 3 years – ENT referral
• Annual vision screening → refer to ophtho for exam every 2 years
• Cervical x-ray at 3-5 years
• Review s/s OSA & refer to ENT prn
• Screen for celiac disease at 2-3 years
• Dental screening every 6 months
Late Childhood

- Assess growth and development
- Annual audiologic evaluation
- Annual ophthalmolologic evaluation
- Annual thyroid screening
- Review skin problems prn
Adolescence – Early Adulthood

• Physical exam
 – CBC
 – Thyroid function test
• Annual audiologic evaluation
• Annual ophthalmologic evaluation
• Recommend routine gynecologic care
• Transfer to adult medical care
Diagnostic Testing for Down

- Prenatal screening
 - Nuchal translucency
 - Nuchal thickness
 - Triple screen
 - Quadruple screen
- Prenatal & Post-natal testing
 - Chromosomes

Copied from Counselling Aids for Genetics, 3rd edition, produced by Greenwood Genetic Centre
Robertsonian Translocation

Maternal age as effect on Trisomy 21

<table>
<thead>
<tr>
<th>Mother's age</th>
<th>Risk of Down Syndrome in live births %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>35</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>3.6</td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

American Family Physician: Aug 15, 2000

46, XX, dic(21;21) (q22.2;q22.2)

100% recurrence risk
Resources for Down Syndrome

• Growth Charts
 – http://adc.bmj.com/cgi/content/full/87/2/97

• AAP Health Supervision Guidelines

• For parents
 – http://www.dsala.org
Name That Syndrome!

- 3 year old female just moved here from Mexico
- No significant birth hx
- PE
 - Short stature
 - Heart murmur
Turner Syndrome Care

- Evaluate cardiac anatomy - echo
- Evaluate renal anatomy - UTZ
- Monitor blood pressure
- Thyroid function
- Refer to Endocrine

- Evaluate hearing
- Evaluate vision
- DDH & scoliosis common
- Predisposed to obesity
- Short stature
- 90% gonadal failure
- ↑ risk for keloids
Diagnostic Testing for Turner

- Chromosomes

Goodhue
Resources for Turner Syndrome

• www.turnersyndrome.org
Name That Syndrome!

- 4 month old male
- Prenatal history
 - Cardiac rhabdomyoma now resolved
- Mom describes some strange posturing
 - Baby bends in two
- PE
 - See photo
Diagnostic Criteria – Tuberous Sclerosis

- Major features
 - Facial angiofibromas
 - Ungual or periungual fibroma
 - Hypomelanotic macules
 - Shagreen patch
 - Cortical tuber
 - Subependymal nodule
 - Subependymal giant cell astrocytoma
 - Multiple retinal nodular hamartomas
 - Cardiac rhabdomyoma
 - Lymphangiomyomatosis
 - Renal angiomyolipoma

- Minor features
 - Multiple randomly distributed pits in dental enamel
 - Hamartomatous rectal polyps
 - Bone cysts
 - Cerebral white-matter “migration tracts”
 - Gingival fibromas
 - Nonrenal hamartoma
 - Retinal achromic patch
 - “Confetti” skin lesions
 - Multiple renal cysts
Diagnostic and Surveillance Screening in TSC

<table>
<thead>
<tr>
<th>Test</th>
<th>CHILD</th>
<th>ADULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundoscopic Examination</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Brain MRI</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Brain EEG</td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Cardiac EKG and ECHO</td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Renal MRI, CT or Ultrasound</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Dermatologic Screen</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Neurodevelopmental Testing</td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Pulmonary CT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| ✗ | With a negative physical examination, computed tomography is recommended.
| | Every 1 to 3 years.
| | Probably less frequently than in children.
| | Unless seizures are suspected, generally not useful in diagnosis.
| | As clinically indicated.
| | Unless needed for diagnosis.
| | Every 6 months to 1 year until involution or site stabilization.
| | Ultrasound generally recommended due to cost although local imaging expertise may vary.
| | Every 3 years until adolescence.
| | Generally for children only.
| | Recommended for children at the time of beginning 1st grade.
| | For women at age 18.

Diagnostic Testing for TS

- TSC1 Gene
- TSC2 Gene
Resources for Tuberous Sclerosis

• www.tsalliance.org
Name That Syndrome!

- 2 year old male new to your practice
- Negative birth hx
- PE:
 - Macrocephalic
 - Mild hypotonia
 - See photos
Diagnosing NF1

• Must have 2 or more of the following:
 – 6 or more CLMs
 – 2 or more neurofibromas or 1 plexiform NF
 – Axillary or inguinal freckling
 – 2 or more Lisch nodules
 – Distinctive bony lesions
 – Affected first-degree relative
Axillary Freckles

Café au lait macules

Neurofibromas

Plexiform neurofibroma

Subcutaneous skin changes
Management of NF1

• Evaluate for new neurofibromas and progression of lesions
• Monitor blood pressure
• Evaluate neurodevelopmental progress
• Evaluate for skeletal changes
• Yearly ophthalmologic evaluations
• 40-50% have learning disabilities
Complications of NF1

- Direct involvement by neurofibromata
- Optic gliomas
- Hypertension
- Scoliosis/kyphosis
- Learning disabilities
- Hypertension
- Risk for malignancies

Goodhue
Diagnostic Testing for NF1

• Clinical diagnosis

• Gene sequencing or FISH for deletion
Must differentiate from Legius Syndrome (SPRED1 gene) if the patient has no neurofibromas
Clinical features include:
- Multiple Café au lait macules
- Axillary freckling
- Macrocephaly
- Autosomal dominant

NO RISK OF NEUROFIBROMAS OR SKIN TUMORS
Usually requires genetic testing for mutations in the SPRED1 gene
Resources for NF1

- www.ctf.org
- www.nfinc.org
- Growth charts
Name That Syndrome!

- 6 month old female
- Birth hx normal
 - 9 lb 14 oz
- PDA ligation 4 weeks
- Off the charts for weight, height, hc
- On PE:
 - Bilateral OM
 - Corneal clouding

Goodhue
Common Characteristics for MPS

- Coarse facial features
- Short stature
- Dysplastic bones
- Thickened skin
- HSM
- Hernias
- Progressive joint stiffness
- Recurring respiratory infections
- OSA
- Heart disease
- Corneal clouding
- Some mental retardation/dev delays
- Hearing loss
Diagnostic Testing for MPS

• Screening if suspect MPS
 – Urinary GAG

• More definitive testing depends on which type of MPS is suspected
Resources for MPS

• http://www.mpssociety.org/
Name That Syndrome!

- 4 year old male
- Birth history normal
- In speech therapy
- Mild mental retardation
- PE
 - Large ears
 - Prominent jaw
Characteristics of Fragile X

- Physical features
 - Prominent jaw
 - Large ears
 - Large testes
- Connective tissue
 - Double jointed
 - Flat feet
- Mitral valve prolapse

- Cognitive delays
- Behavioral challenges
 - ADHD
 - Hand flapping
- Sensory integration problems
- Living skills problems
- Speech & language problems
Diagnostic Testing for Fragile X

• Fragile X DNA
 – Suspect in any male with mental retardation
 – Suspect in any autistic male
Resources for Fragile X

• http://www.fragilex.org/
Name That Syndrome!

- 2 month old male
- Birth history
 - Spent a few days in NICU for NG feeds
- PE:
 - hypotonia
Diagnostic Criteria

• Major
 – Infantile central hypotonia
 – Infantile feeding problems and/or FTT
 – Rapid weight gain age 1-6 years
 – Narrow bifrontal diameter, narrow nasal bridge, down-turned mouth
 – Hypogonadism
 – Developmental delay/MR

• Minor
 – Infantile lethargy
 – Sleep disturbance or apnea
 – Short stature (teen)
 – Hypopigmentation
 – Small hands and feet
 – Narrow hands with straight ulnar border
 – Esotropia/myopia
 – Thick viscous saliva
 – Skin picking
Evaluation

• Management of hypotonia/poor feeding
• Evaluation for hypogonadism and/or hypopituitarism – refer to Endocrine
• Management of obesity
 – Risk for Type II diabetes
• Monitor for scoliosis
• Behavioral interventions
• Nutritional evaluation
Diagnostic Testing for PWS

- Methylation Studies
Table 1 Nutritional phases in Prader-Willi syndrome

<table>
<thead>
<tr>
<th>Phases</th>
<th>Median ages</th>
<th>Clinical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Prenatal to birth</td>
<td>Decreased fetal movements and lower birth weight than sibs</td>
</tr>
<tr>
<td>1a</td>
<td>0–9 months</td>
<td>Hypotonia with difficulty feeding and decreased appetite</td>
</tr>
<tr>
<td>1b</td>
<td>9–25 months</td>
<td>Improved feeding and appetite and growing appropriately</td>
</tr>
<tr>
<td>2a</td>
<td>2.1–4.5 years</td>
<td>Weight increasing without appetite increase or excess calories</td>
</tr>
<tr>
<td>2b</td>
<td>4.5–8 years</td>
<td>Increased appetite and calories, but can feel full</td>
</tr>
<tr>
<td>3</td>
<td>8 years to adulthood</td>
<td>Hyperphagic, rarely feels full</td>
</tr>
<tr>
<td>4</td>
<td>Adulthood</td>
<td>Appetite is no longer insatiable</td>
</tr>
</tbody>
</table>

Modified from Am J Med Genet A.3

Figure a & b: without Growth hormone
Bottom c & d WITH Growth hormone treatment

Resources for Prader-Willi

• www.pwsausa.org
Name That Syndrome!

- 1 year old female
- Hx feeding problems
- No words yet
- Not walking yet
- 1st episode tonic-clonic seizure
Characteristics of Angelman

- Severe developmental delay
- Speech impairment
- Ataxia
- Behavioral uniqueness
 - Laughter
 - Hand flapping
 - ↑ excitability
- Typical facies
 - Flat occiput
 - Prognathia
 - Almond-shaped eyes
 - Wide mouth
- Suck/swallow disorder
- Strabismus
- Sleep disturbance

Goodhue
Diagnostic Testing for Angelman

- Methylation studies
Resources for Angelman

- www.angelman.org
- www.international.angelmansyndrome.org
Goodhue