

A Stepped Approach to Prescribing for Type 2 Diabetes **Glycemic Control** **FACULTY** Lenora Lorenzo DNP, BC- FNP/GNP/ ADM, CDE, FAANP

Primary Care Provider Team Leader Chronic Disease Management Veterans Health Affairs Pacific Island Health Care System, Hawai'i Adjunct Faculty, University of Hawai'i

American Association of Nurse Practitioners Region 9 Director

Arizona, California, Nevada, Hawai'i & U.S. Pacific Territories (Guam, American Samoa & the Marianna Islands)

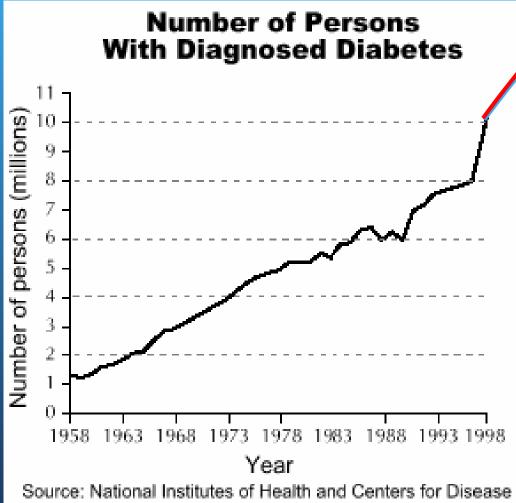
FACULTY DECLARATIONS

Dr. Lorenzo declares that in the past 12 months she has nothing to disclose.

Learning Objectives

Discuss relevant principles of physiology, pharmakokinetics and pharmocodynamics for Type 2 Diabetes (T2DM) glycemic control.

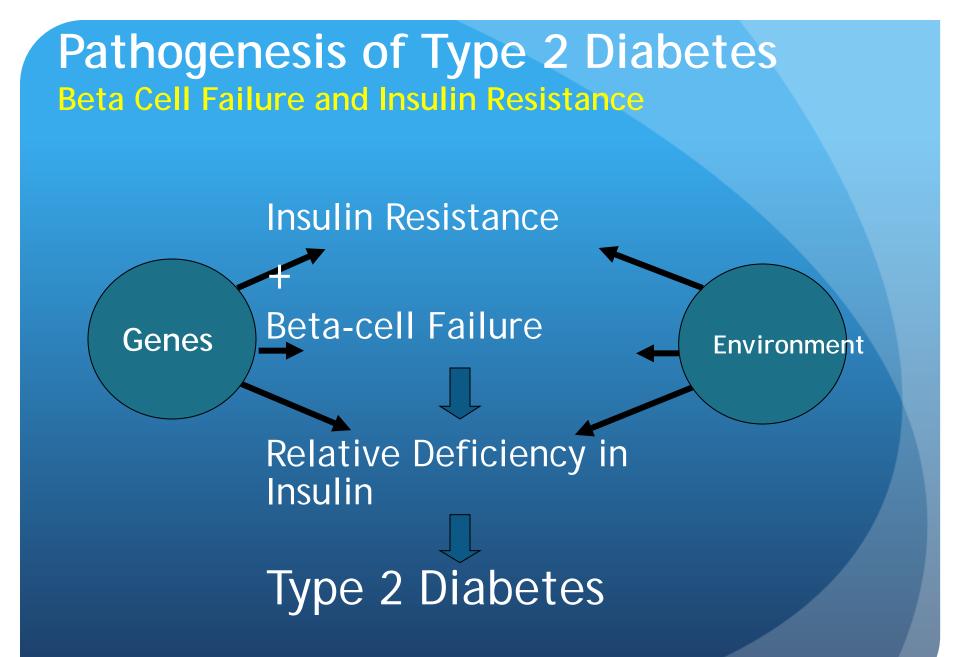
Give rationale for selecting drugs of choice for T2 DM glycemic control, including evidence based guidelines.


Identify the goals of therapy for T2DM glycemic control, desired effects and evaluation of patient response, including management of adverse reactions.

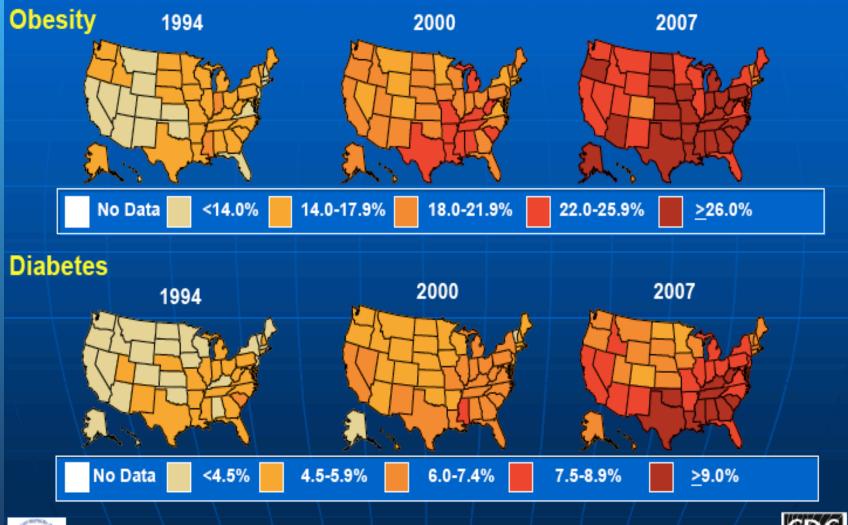
By 2020, 1 of every 2 Americans could have Diabetes or Prediabetes

United Health Center for Health Reform & Modernization. (2010). *The United States of diabetes.* Retrieved from http://www.unitedhealthgroup.com/hrm/unh_workingpaper5.pdf

We Have an Epidemic of Diabetes !!



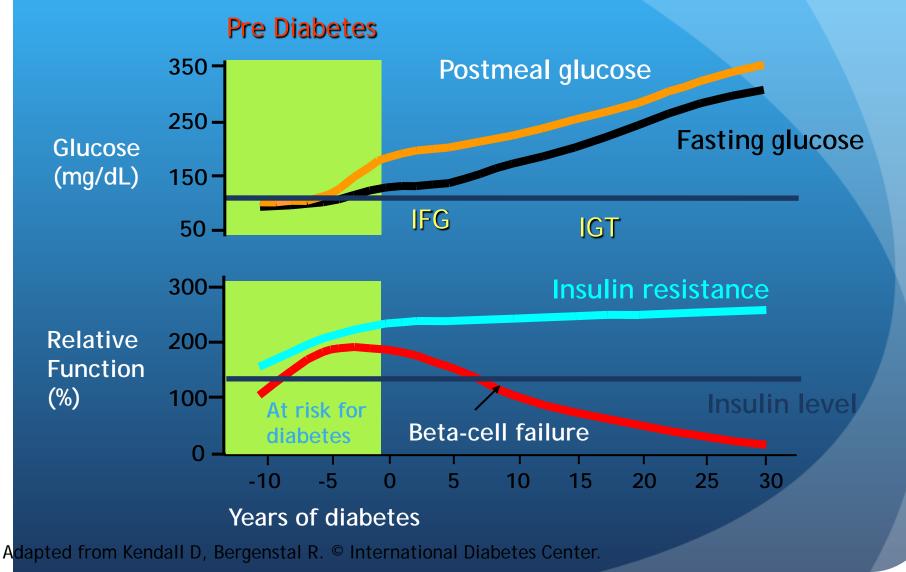
Control and Prevention



2010 26mil

2008

Age-adjusted Percentage of U.S. Adults Who Were Obese or Who Had Diagnosed Diabetes

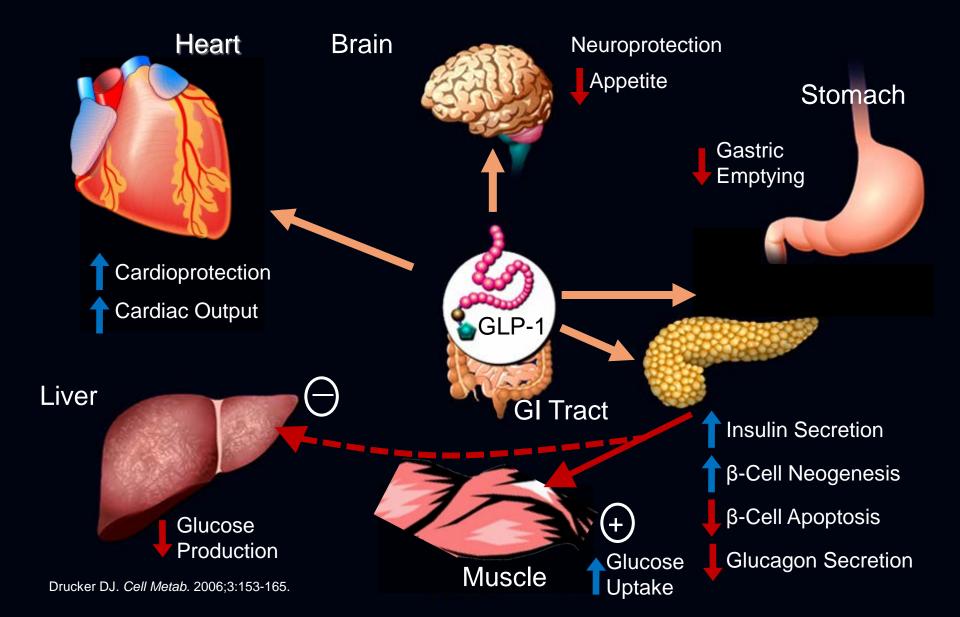


CDC's Division of Diabetes Translation. National Diabetes Surveillance System available at http://www.cdc.gov/diabetes/statistics

Natural History of Type 2 Diabetes Progression: Beta Cell Failure and Insulin Resistance

Other Aspects of Type 2 Diabetes Pathophysiology

Increased Increased Hepatic GlucoseGlucagon Secretion Production

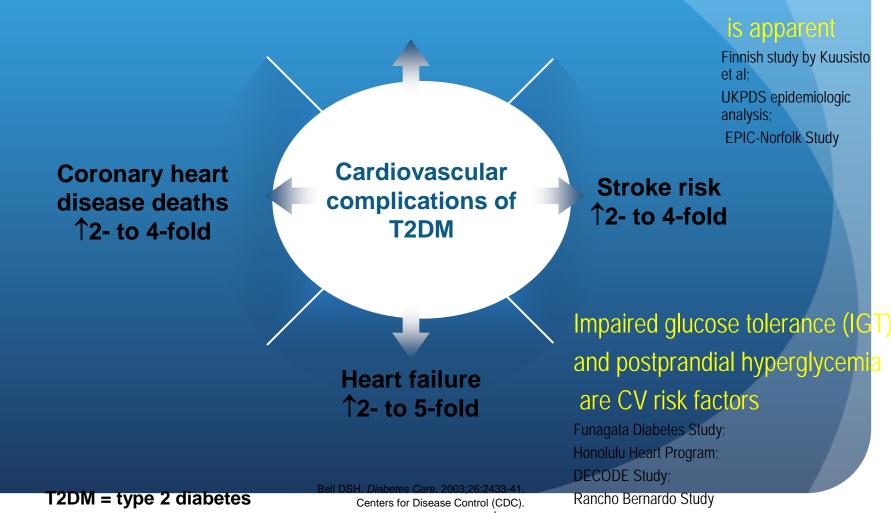

Increased Gastric Emptying Rate

Type 2 Diabetes

Impaired Incretin Effect
 Decreased secretion of GLP-1
 Impaired response to GIP

Decreased Amylin Secretion

Pleiotropic Actions of GLP-1

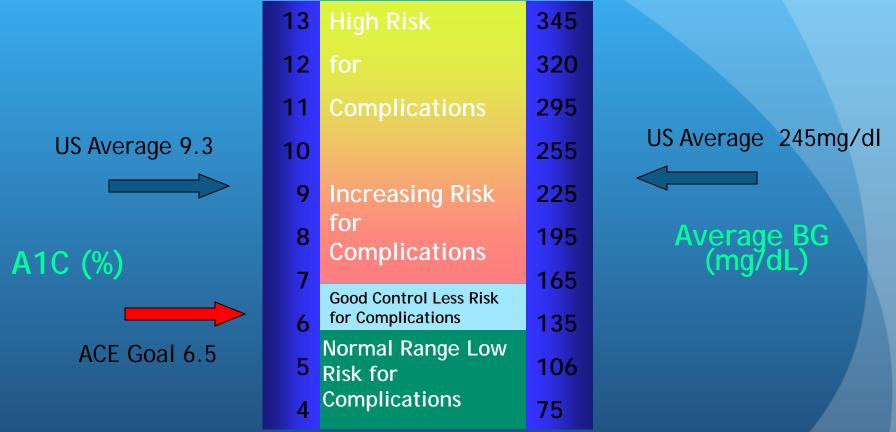


Cardiovascular disease and diabetes

~65% of deaths are due to CV disease

No A1C

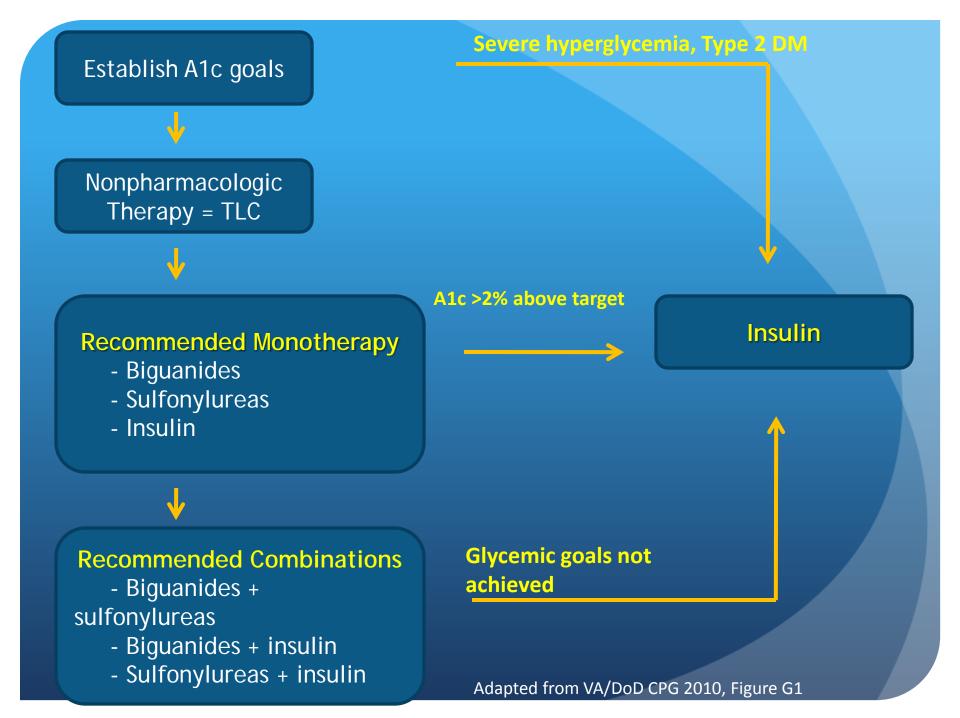
threshold



ABC Goals

	ADA	AACE/ACE	IDF
A = A1C	<7%	<6.5	
B = BP (mmHg)	<130/80	<130/80	<130/80
C = Cholesterol			
LDL (mg/dL)	< 100 or <70	< 100 or < 70	< 95
HDL (mg/dL)	> 40 (M) or >50 (F)	> 40 (M) or >50 (F)	> 39
TG (mg/dL)	< 150	< 150	< 200
E=Eyes annual retinal exam			
F= FOOT EXAM			

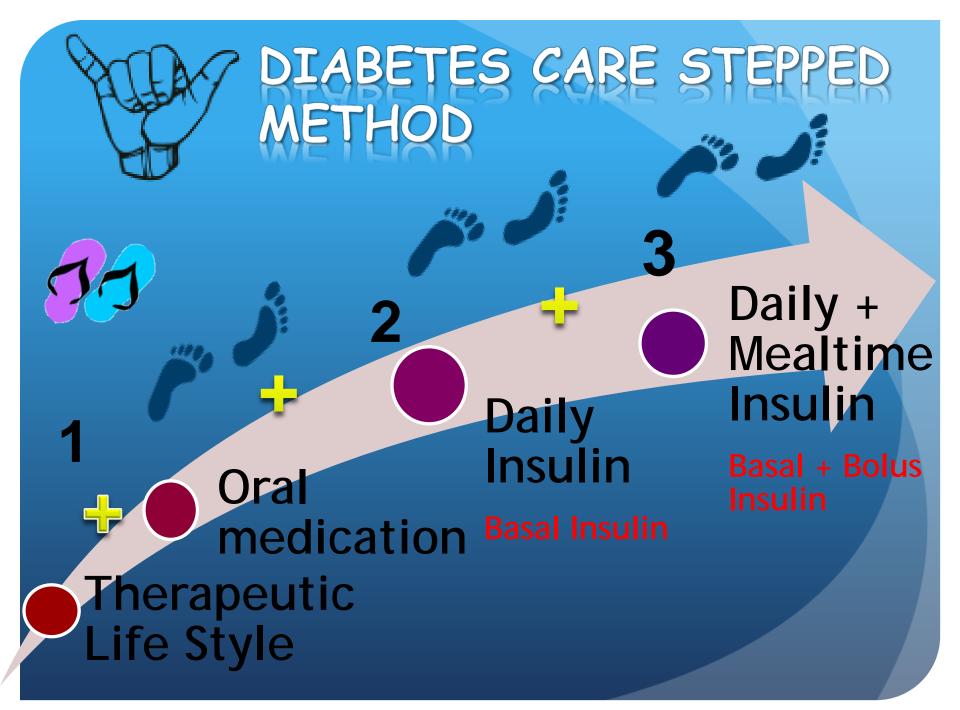
QUALITY OF PATIENT CARE


Data from Diabetes Control and Complications Trial (DCCT).

Relationship Between A1C and Average Blood Glucose

Glycemic Goals for all Patients

	Euglycemic	ADA	AACE/ACE
A1C	4.4-5.9%	< 7%	<= 6.5%
FBG (mg/dl)	<100	70 - 130	< 110
1-2hppBG (mg/dl)	<140	< 180 (bedtime: < 140)	<140



Pharmacologic Therapy

- First line agents
 Metformin
 - Sulfonylureas
 - Insulin
- Alternative agents

 Thiazolidinediones
- Newer agents

 GLP-1 agonists
 DPP-4 inhibitors
 Amylin analog

Pharmacologic Therapy

- First line agents
 Metformin
 - Sulfonylureas
 - Insulin
- Alternative agents

 Thiazolidinediones
- Newer agents

 GLP-1 agonists
 DPP-4 inhibitors
 Amylin analog

Biguanides – Metformin^{3,4}

- First line therapy
- Now recommended at baseline diagnosis
- MOA
 - Decrease hepatic glucose output
 - Increase peripheral insulin sensitivity
 - Decrease intestinal absorption of glucose
- Decrease A1c ~1-2%
- Maximum clinical effective dose 2g/day

Metformin

• Monitor:

- Renal function, Caution with pts >80 y/o
- May restore ovulation in women previously anovulatory due to insulin resistance
- May be associated with vitamin B12 reduction

Counseling points:

- Take with food & titrate slow to avoid GI side effects
- Hold metformin the day of iodine contrast media use and restart 2 days after when renal function returns

Metformin⁴

Benefits

Limitations

- Reduction in microvascular complications
- Lack of associated hypoglycemia
- Weight neutral
 - possible weight loss (2-5kg)
- May reduce TG by 16%, LDL by 8%,CHOL by 5%
- May increase HDL by 2%
- o Generic available

- o Gastrointestinal intolerance
- o Precautions
 - 1. Age >80
 - 2. Liver dysfunction
 - 3. Excessive alcohol intake
 - 4. Hypoxemia
- o Contraindication
 - Serum creatinine (SCr)
 - \geq 1.5 in males
 - \geq 1.4 in female
- o Precautions

History of lactic acidosis, liver disease, alcohol abuse

Metformin: Clinical Pearls

- Drug of choice for initial therapy
- Majority of dose can be given at bedtime if FBS still above goal
- No hypoglycemia with metformin monotherapy
- XR formulation- better GI tolerability
- Liquid formulation- 500mg/5ml (Riomet)

Sulfonylureas/Meglitinides

Mechanism of Action

- Increases insulin release from pancreatic beta cells (primary mechanism)
- Decreases hepatic glucose production (sulfonylureas)
- Increases insulin sensitivity at peripheral sites (sulfonylureas)

Sulfonylureas

- First Generation Agents
- Acetohexamide
 Chloropropramide
 Tolazamide
- Tolbutamide

Second Generation Agents Glipizide • Glyburide • Glimepiride

Sulfonylureas

Glyburide

- Metabolites can accumulate in patients with CKD -> hypoglycemia
- Dose: 2.5-20 mg daily
- Metabolism: hepatic (but renally eliminated)
- Not recommended with CrCl <50ml/min

• Glipizide

- Dose: 2.5-40 mg daily
- Not renally eliminated ->
 Less risk for hypoglycemia
- Doses >20mg/day have shown little increased benefit
- Dose conversion -1: 2
 - 5mg glyburide-> 10mg glipizide

Sulfonylureas

Benefits

- A1c lowering ~1-2%
- Adverse drug reactions
 - Hypoglycemia
 - Incidence: glipizide < glimperide < glyburide
 - Weight Gain of ~ 2kg
 - Hypersensitivity (sulfa allergy risk of cross reactivity exists)
 - Hypernatremia with fluid retention
 - Abnormal hepatic tests
 - Increased sensitivity to sun light

Sulfonylureas: Clinical Pearls

 Not first line therapy anymore

 May be more effective in lower doses as an add on medication

Meglitinides

- Repaglinide (Prandin

 ©)
 0.5-4mg 2-4x/day
 (max 16mg/day)
- Nateglidine (Starlix ®)
 120mg TID 30 minutes prior to meal

 CrCl 20-40mg/ml Starting dose 0.5mg TID and titrate up

 No adjustments for renal or hepatic

Meglitinide: Clinical Pearls

- Benefits: 0.5-1.5% A1c lowering
- Adverse drug reactions: bloating, abdominal cramps, diarrhea, gas

 Clinical pearl: weight neutral, repaglinide more effective for lowering A1c than nateglinide, not recommended as monotherapy, shorter T1/2 than SFU

Thiazolidinediones

- AKA glitazones or TZDs
- Mechanism of Action
 Reduces insulin resistance in peripheral tissues and liver

Benefit: A1c lowering
 0.5 -1.4%

Pioglitazone

- Dose: 15 -45 mg daily
- Linked to increased risk of new or worsening heart failure (HF) exacerbation
- Non-formulary but VA preferred TZD given no contraindications

TZDS Adverse reactions

- Black box warning -new onset or worsening of existing heart failure
 - Contraindicated in patients with Class III/IV heart failure
 - Edema and/or weight gain
 - Myocardial infarction
 - Liver toxicity -LFTs > 2.5X ULN
 - Troglitazone withdrawn from market for this reason
 - Bone loss

TZDs Clinical Pearls

No hypoglycemia

 Raises HDL levels, converts small dense to large LDL particle size (less atherogenic)

After initiating or dose adjustment of TZD,
8-12 weeks of therapy are required to see full benefit. REMS-rosiglitazone
 Risk Evaluation and Mitigation Strategy (REMS)

- Due to increased risk of MI
- Enrollment required with Manufacturer
 Providers
 - Patients
- Effective November 18, 2011

Alpha-glucosidase inhibitors

 Mechanism of action: inhibits intestinal digestion of starches and all sugars composed of more than 1 simple sugar

• Benefit: 0.5-0.8% A1c lowering

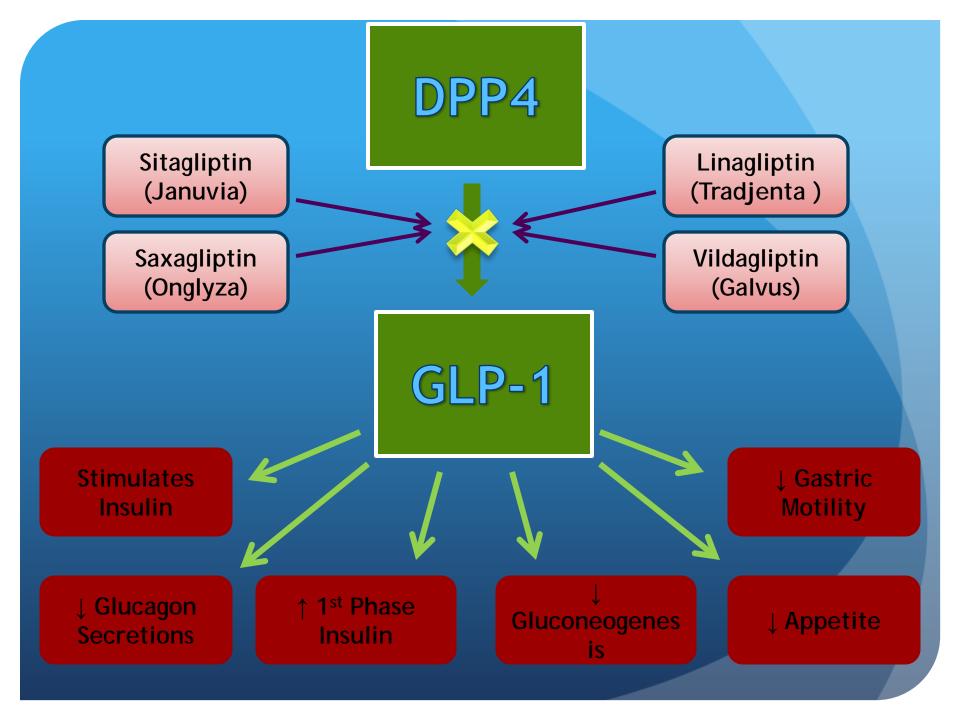
 Adverse drug reactions: gas, bloating, diarrhea

Alpha Glucosidase Inhibitors

Acarbose (Precose Miglitol (Glyset ®)

- 25-100mg TID with meals
- Not on VA formulary
 Miglitol (Glyset ®)
- 25-100mg TID with meals
- On VA Formulary

Clinical pearls:


Effective for lowering post-prandial BG, titrate slowly to minimize GI upset, weight neutral, use as 3rd line agent, use fast absorbing simple sugars to treat hypoglycemia while on this therapy

NEWER AGENTS

Incretin Mimetics DPP-4 inhibitors Amylin Analog Peptide Agents

Incretins

- Gut hormones -produced by GI tract
- Stimulate insulin release in response to food intake
 - GLP-1: glucagon like polypeptide 6cell response
- GIP: gastric inhibitory peptide glu-dependent insulinotropic peptide
 6cell is resistant to GIP

GLP-1

• Mechanism of action:

- Stimulates insulin and lowers glucagon secretion
- Improves first phase insulin release
- Reduces hepatic glucose production
- Decreases appetite (weight)
- Decrease gastric motility

- 10 mcg subcutaneously bid (5 mcg 1st month)
- First GLP-1 agonist approved May 2005
- Increased resistance to DPP-4, extended t ¹/₂
- Benefits: 0.5-1% reduction in A1c
- Adverse Drug Reaction: HA, nausea, diarrhea, pancreatitis
- May be associated with renal insufficiency

Liraglutide (Victoza[®]) -0.6-1.8 mg/day approved January 2010 Benefit: 1.0-1.5% A1c lowering Adverse drug reaction: HA, nausea, diarrhea, pancreatitis Medullary thyroid cancer in rats mild elevation in calcitonin in humans limited cases of PTC in humans

Future GLP-1 Agonist/Antagonist

Exenatide -LAR Bydureon[®]

FDA approval delayed concerns for clearance in CKD effects on QT interval, HR at high dose

- Taspoglutide: 20-40 mg weekly suspended phase III -N/V, heart sxs
- Alboglutide: 9-32 mg weekly

 Place in Therapy: type 2 diabetics not achieving glucose control on metformin, SU, and/or TZD

Clinical pearls:

- Not effective in type 1 diabetes
- Effective in lowering post-prandial glucose
- Concurrent use with prandial insulin has not been studied and can not be recommended

DPP-4 Inhibitors

Mechanism of Action

provide competitive inhibition of the enzyme (DPP-4) responsible for GLP-1 inactivation, thus it prolongs effects of endogenous GLP-1

mimic effect of incretin

- Benefits: 0.5%-0.8% A1c reduction
- Adverse Drug Reactions: URI, HA, diarrhea, UTI, abdominal pain, *acute pancreatitis with sitagliptin
- Clinical Pearls:
 - Low risk for hypoglycemia
 - Weight neutral

DPP-4 Inhibitors Sitagliptin (Januvia[®]) approved 2008 50 - 100 mg/day Saxagliptin (Onglyza [®]) approved 2009 2.5-5 mg/day, reduce in renal failure Linagliptin (Tradjenta [®]) approved 2011 5mg/day • Vildagliptin (Galvus) not available in US Not on usually formulary

 Amylin -6cell peptide co-secreted with insulin

• Mechanism of Action:

- delay gastric emptying
- suppress appetite
- inhibit glucagon secretion, reduces glucose production by liver

Amylin Analog

- Pramlintide (Symlin®) -synthetic analog FDA approved 2007 for use with insulin
- Subcutaneous injection TID
- Type1: 30 60 mcg; start at 15 mcg
- Type 2: 60-120 mcg; start at

No renal dose adjustment required

Amylin

- Benefit: 0.5-1.% A1c lowering
- Adverse drug reactions: nausea (48%), anorexia, vomiting, fatigue, headache

• Clinical Pearls:

- Must be taken with meals containing
- >250 calories or >30 gms CHO
- Weight loss
- Manufacturer recommends decreasing dose of bolus insulin by 50% when starting pramlintide

Step # 2				
TLC + Oral - Daily Insulin				
	Name s	Generic	Brand	
Slow & Safe	Action 2-4 hrs.	Intermediate acting		
 Replacement of Insulin Hormone 	Last 10 + hours	NPH	Humulin Novolin	
 Not Painful 		Long acting		
 Safe, Quick and Easy Best way to Lower Blood Sugar Levels 	Last 20 + hours	Glargine Detemir	Lantus Levemir	

Insulin Therapies Availible:

• Rapid Acting

- Humalog (lispro), Novolog (aspart), & Aprida (glulisine)
- Regular (Short acting)
 - Humulin R & Novolin R
- NPH (Intermediate acting)
 - Humulin N & Novolin N
- Long Acting
 - Lantus (glargine) & Levemir (detemir)
- Mixes (NPH/Regular)
 - 70/30; 50/50; & others

Benefits of Insulin Dosing Regimens One Injection Intermediate-Acting or Long-Acting

Insulin Analog at Bedtime

Premixed Insulin Before Dinner

Two Injections

- Breakfast and Dinner Injections of Premixed Insulin
- Breakfast and Dinner: Short-Acting or Rapid-Acting Plus NPH or Long-Acting Insulin Analog

Chan JL, Abrahamson MJ. Pharmacological management of type 2 diabetes mellitus: rationals for rational use of insulin. Mayo Clin Proc. 2003;78:459–467 and Owens DR, Zinman B, Bolli GB. Insulins today and beyond. Lancet. 2001;358:739–746

Treat to Target

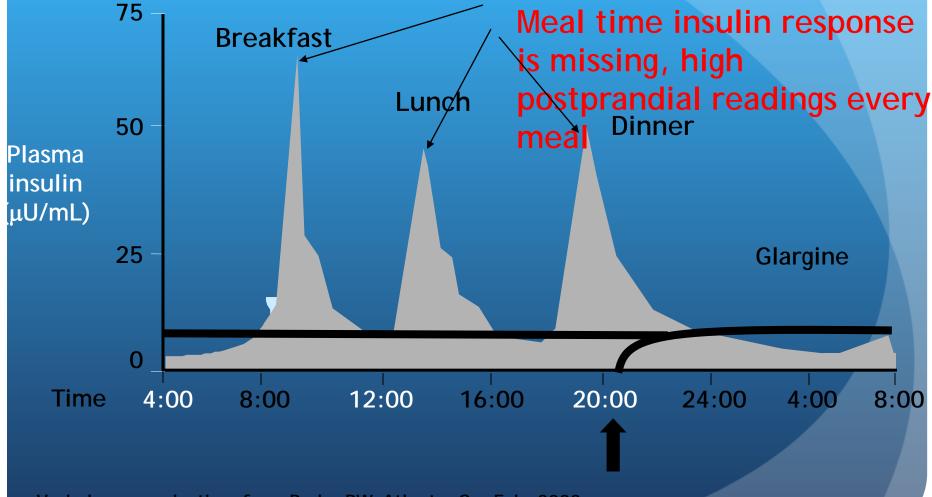
Self-monitored FPG (mg/dL) From Preceding 2 Days With no Episodes of Severe Hypoglycemia or PG ≤ 72 mg/dL (IU/d)

100-120 mg/dL

120-140 mg/dL

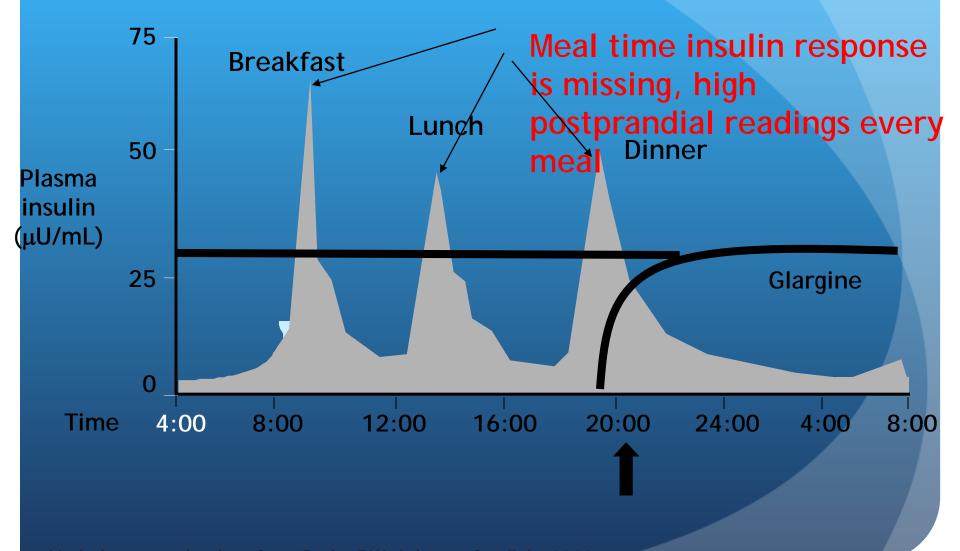
140-180 mg/dL

≥ 180 mg/dL

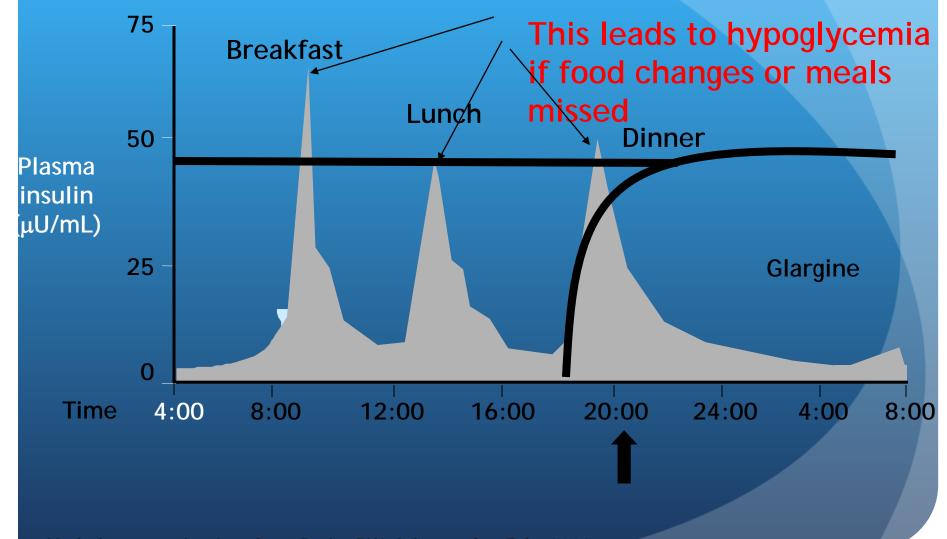

FPG = fasting plasma glucose; PG = prandial glucose

Riddle M, Rosenstock J, Gerich J; Insulin Glargine 4002 Study Investigators. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26:3080-3086

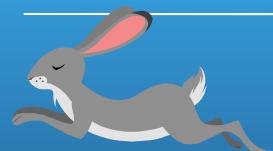
Titration: Increase in Insulin Dose


Step # 3: TLC + Daily & Mealtime				
Insulin that	emixed			
covers both all	Name	Generic	Bran	d
through the day and meal times premix	Action 30- 60 min Lasts 10-16 hrs	Premix NPH + Regular		Regular
premix	Fast + Slow Mixture	Novolin 70/		Humulin 70/30 Novolin 70/30 Humulin 50/50
Regular NPH	15-60 min Lasts 10- 16 hrs	Newer Premix (Analogs)		
	Rapid + Slow Mixture	Aspart 70/30 Lispro 75/25 Lispro 50/50	H	ovolog 70/30 umalog 75/25 umalog 50/50

Typical Starting Point Basal Treatment Program with Peakless Long-Acting Analogs Alone

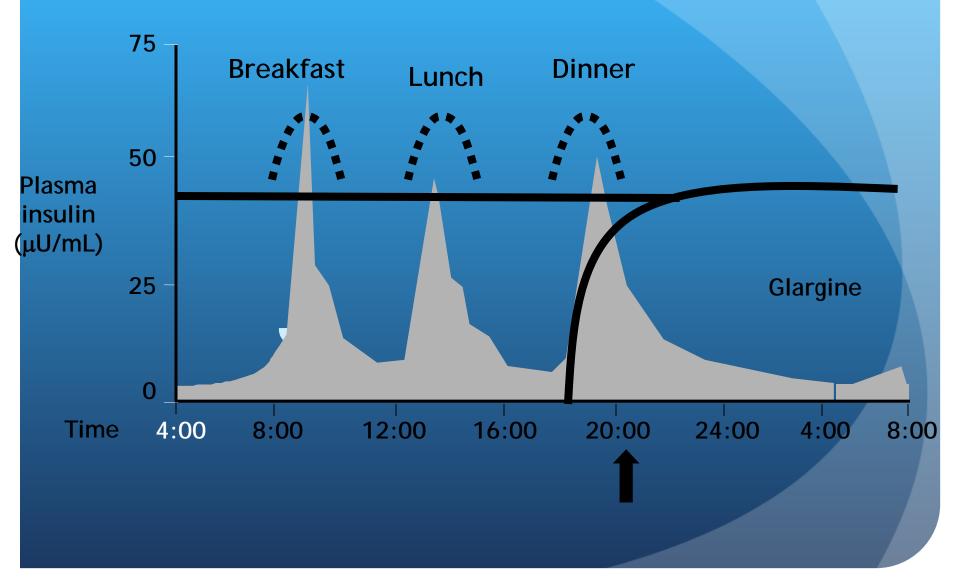

Verbal communication from Bode, BW. Atlanta, Ga; Feb. 2003.

Clinicians often increase long acting insulin to address meal related glucose


Verbal communication from Bode, BW. Atlanta, Ga; Feb. 2003.

Clinicians continue increase long acting insulin to address meal related glucose

Verbal communication from Bode, BW. Atlanta, Ga; Feb. 2003

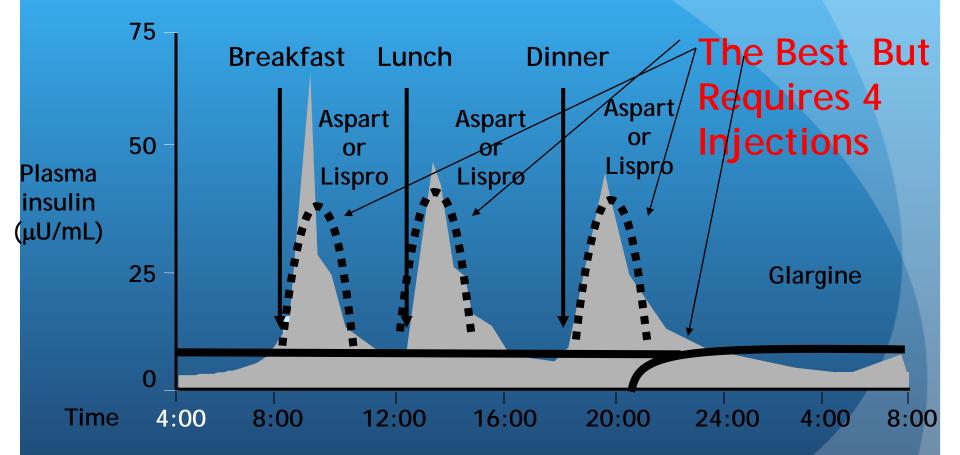

Step#3 Daily + Mealtime TLC Insulin Basal + Bolus

Name	Generic		Brand
Action	Fast	30 - 60	minutes
Lasts 3-6 hrs	Regular		Humulin R Novolin R
	Rapid	5 minutes	
Lasts 2-4 hrs	Aspart Glulisine Lispro		Novolog Apidra Humalog

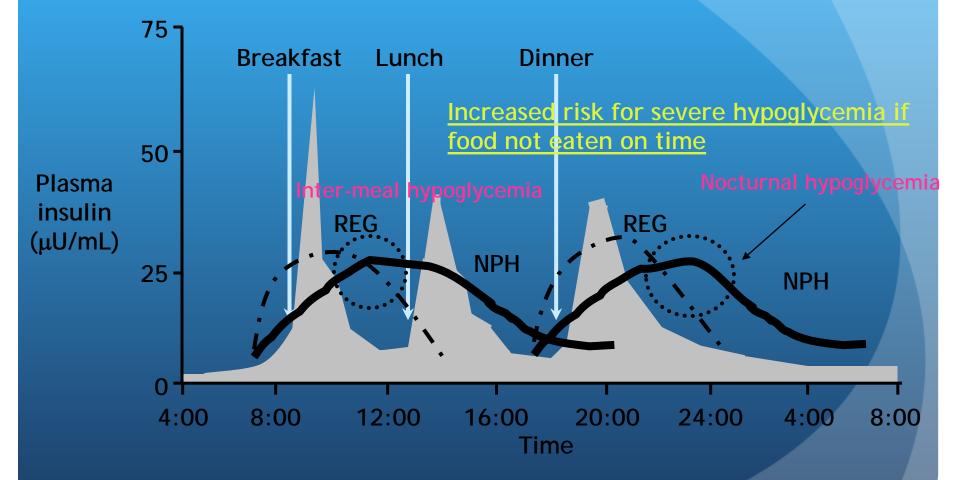
Clinicians then finally add prandial insulin to address meal related glucose

Insulin: Effect on Glucose

Insulin	Onset	Peak (hours)	Duration (hours)
Rapid Acting	5-15 min	0.5-1.5	<5
Regular	30-60 min	2-3	5-8
NPH	2-4 hours	5-10	10-16
Long Acting	2-8 hours	No peak	~1 day

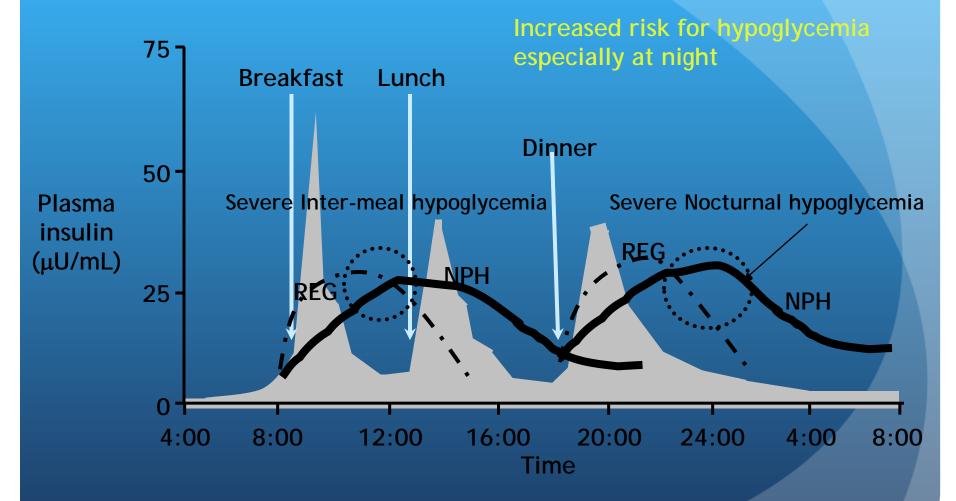

- Different insulins have a varied effect on glucose
- If someone is experiencing hypoglycemia due to an excessive amount of insulin, they need to be assessed and treated throughout the course of the insulin in the body.

Starting MDI Starting insulin dose is based on weight $0.2 \times \text{wgt.}$ in lbs. or $0.45 \times \text{wgt.}$ in kg • Bolus dose (aspart/lispro) = 20% of starting dose at each meal • Basal dose (glargine/NPH) = 40% of starting

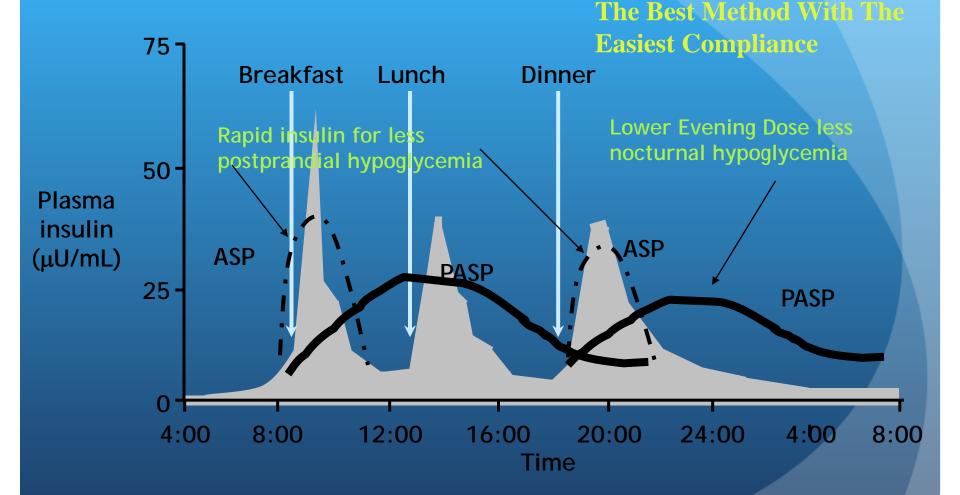

dose at bedtime

Starting WDI in 180 lb person • Starting dose = 0.2 x wgt. in lbs. 0.2 x 180 lbs. = 36 units Bolus dose = 20% of starting dose at each meal 20% of 36 units = 7 units ac (tid) Basal dose = 40% of starting dose at bedtime 40% of 36 units = 14 units at HS

Basal/Bolus Treatment Program with Rapid-Acting and Peakless Analogs



Basal/Bolus Affect of Insulin Absorption with Regular and NPH Insulin Preparations injecting 45 minutes before a meal


Skyler J. In: Humes HD, Dupont HL, eds. *Kelley's Textbook of Internal Medicine*. 4th ed. Philadelphia, Pa: Lippincott; 2000

Basal/Bolus Affect of Insulin Absorption with Regular and NPH Insulin Preparations Injecting with a Meal.

Skyler J. In: Humes HD, Dupont HL, eds. *Kelley's Textbook of Internal Medicine*. 4th ed. Philadelphia, Pa: Lippincott; 2000.

Basal/Bolus Affect of Insulin Absorption with Aspart and Protamated Aspart Mixed Insulin Preparations Injecting with a Meal.

Skyler J. In: Humes HD, Dupont HL, eds. *Kelley's Textbook of Internal Medicine*. 4th ed. Philadelphia, Pa: Lippincott; 2000.

Sliding Scale Insulin

Types of Sliding Scales

Pre Set Dose

• Pros:	Meal or Time	<u>Dose</u>
• Easy to use	Breakfast	7units
 No patient calculations necessary Increased patient compliance 	Lunch	5 units
• Cons	Dinner	6 units
 No correlation with current glucose readings 	Bedtime	2 units
 Decreases importance of SMBG 		
 Does not account for meal consumption 		

 Very high likelihood of hypoglycemia

Correction Bolus Scale

- Must determine how much glucose is lowered by 1 unit of short- or rapid-acting insulin
- This number is known as the correction factor (CF)
- Use the 1700 rule to estimate the CF
- CF = 1700 divided by the total daily dose (TDD)

ex: if TDD = 36 units, then CF = 1700/36 = ~50

meaning 1 unit will lower the BG ~50 mg/dl

Sliding Scale Insulin

Sliding Scales

Based on Pre-Meal Readings

	-	<u>ReadingDose</u>	
	Pros:Easy to use	150mg/dl	1unit
	 Lasy to use No patient calculations necessary 	200mg/dl	2 units
	 Increased patient compliance 	250	units
	 Increased reason for SMBG 	300	4 units
•	Cons	400	6 units

- Chasing high readings
- Does not account for meal consumption
- Higher likelihood of hypoglycemia

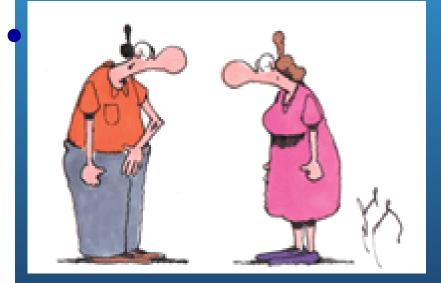
Barriers to Starting Insulin Therapy

Patient fear and resistance

- Clinician resistance
- Association of needles with pain
- Fear of complications (eg, amputations)
- Time commitment required
 - Inconvenience

eight gain

Cost


Lack of education

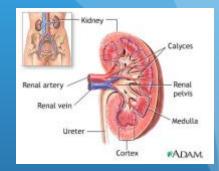
Meece J. Dispelling myths and removing barriers about insulin in type 2 diabetes. Diabetes Educ. 2006;32(suppl 1):9s-18s

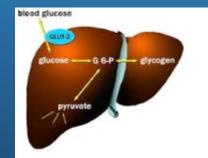
Dispelling Fears

Team's positive attitude toward insulin

- Not Painful!
 - Devices are User Friendly

"It's not a tattoo. I mistook a Bic for an Insulin Pen" 2004 Diabetes Health


Hypoglycemia: Recognition


Sometimes difficult to diagnose based on symptoms

- Whipple's Triad
 - Symptoms consistent with hypoglycemia
 - Low glucose reading
 - Reversal or improvement of symptoms after treatment
- There are a variety of symptoms associated with hypoglycemia
 - Adrenergic
 - Glucagon mediated
 - Neuroglycopenic

Hypoglycemia: Pathophysiology

- The brain is the first organ effected by low blood glucose
- The body responds hypoglycemia by:
 - Glycogenolysis
 - Glycogen stores (~75g) in liver can be broken down into glucose monomers
 - Can keep the body out of coma for a short period of time
 - Gluconeogenesis
 - Production of glucose from non-carbohydrate sources such as lactate, glycerol, & glucogenic amino acids
 - Takes place in the liver & to lesser extent in the cortex of the kidney

Hypoglycemia: Signs & Symptoms

Adrenergic:	Glucagon Mediated:	Neuroglycopenic:
 Shakiness & Anxiety Sweating Pallor; feeling cold & clammy Palpitations Tachycardia Mydriasis (dilation) Paresthesias 	 Hunger Nausea & Vomiting Abdominal Pain Headache Borborygmus 	 Mental status changes Impaired judgment Dysphoria & mood changes Fatigue/Weakness Confusion & Amnesia Double/blurred vision Difficulty speaking Ataxia/motor deficit Coma Generalized or focal seizures

Hypoglycemia: Treatment

• Mild to Moderate

- <70mg/dl but patient is able to self treat
- Usually characterized by sweating, trembling, difficulty concentrating, lightheadedness, & lack of coordination
- Rule of 15
 - Consume 15 grams of glucose or a quick acting carbohydrate
 - Recheck glucose after 15 minutes to determine need to retreat
 - If continued hypoglycemia; repeat treatment

Hypoglycemia: The Causes

- Can be induced by certain medications:
 - Salicylates
 - Generally only at high doses
 - Bactrim/Septra
 - Beta blockers
 - Decreased glycogenolysis & warning signs
 - Quinine
 - Pentamidine
 - Toxic to beta cells in pancreas
 - ACE inhibitors
 - Insulin or secretegogues

Hypoglycemia: The Values

Hypoglycemia is defined as a blood sugar of <70 mg/dl
Depending on the person, different lab values will have differing implications and symptoms, so it is important to treat the patient regardless of labs appearing "low"

Glucose Lab Value	Signs/Symptoms
<65 mg/dl	Begin to see mental deficiencies
<40 mg/dl	Impaired action & judgmen; seizure threshold is lowered
<10 mg/dl	Neurons essentially become electrically silent

Hypoglycemia: The Causes

- Severe illness
 - Including sepsis
- Prolonged fasting
 - Including diarrheal/gastrointestinal illness
- Exercise
- Alcohol
 - Decreases liver gluconeogenesis
- Growth hormone deficiency
- Hypopituitarism
- Addison's disease
- Adrenal insufficiency
- Other metabolic disorders
- Organ failure

Hypoglycemia: Treatment

- Quick-acting carbohydrate sources:
 - Glucose tablets/gels
 - Brand dependent, but ~5g/tablet & ~15g/gel dose
 - Hard candies: ~10g/piece
 - Raisins: 2 TBSP
 - Soda (NON-diet): 4-6 oz
 - Fruit Juice: 4-6 oz
 - Milk (NO or LOW fat only): 8 oz

- FAT DELAYS ABSORPTION OF CARBS HIGH FAT FOODS ARE POOR CHOICES WHEN TREATING HYPOGLYCEMIA
 - For example ice-cream, doughnuts, candy bars, cheese, chips, milkshakes, etc...

Hypoglycemia: Treatment

• SEVERE

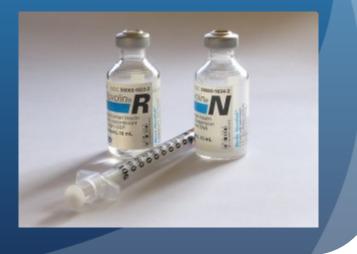
- Usually characterized by the inability to selftreat due to mental status changes, lethargy, & unconsciousness
- If patient is able to swallow:
 - Glucose gel
 - Honey
 - Juice
- Unable to swallow:
 - Glucagon injection
 - Could potentially use IV dextrose in severe & prolonged cases OR if the patient does not respond to glucagon therapy

Glucagon Injection:

- Used in severe hypoglycemia only
- Is in an emergency kit
 - Includes syringe, cap, & vial for reconstitution
 - SC/IM injection usually into top of the thigh
 - After injection patient needs to be turned on side to prevent choking
 - If patient does not wake up after 15 minutes give another shot of glucagon
 - When patient wakes up they need immediate oral fast acting carbs followed by a longer acting source of sugar to replenish carb sources in the body

INSULIN

Туре	Onset	Peak	Duration
Rapid– Apart, Lispro, Glulisine	<15 min	60-120 minutes	4-5 hours
Regular	30-45 min	2-4 hours	6-8 hours
NPH	1-2 hr	6-8 hours	18-26 hrs
Detimir	1-2 hr	Nearly none	18-26 hrs (dose related)
Glargine	1-2 hr	Nearly None	22-26 hours


Mixed Insulins

Туре	Long Acting	Short Acting	Devices
Humalog 75/25	75% Protamated Lispro	25% Lispro	KwikPen, Vial, Turbopen
Novolog 70/30	75% Protamated Aspart	25% Aspart	FlexPen, Vial
Humalog 50/50	50% Protamated Lispro	50% Lispro	KwikPen, Vial, Turbopen
Novolin 70/30	70% NPH	30% Regular	Innolet, Vial
Humulin 70/30	70% NPH	30% Regular	Turbopen, Vial

Insulin Storage

• Vials:

Refrigerated (36-46°F):
Unopened: expiration date
Opened: 28 days
Room temperature (59-86°F):
Unopened: 28 days
Opened: 28 days

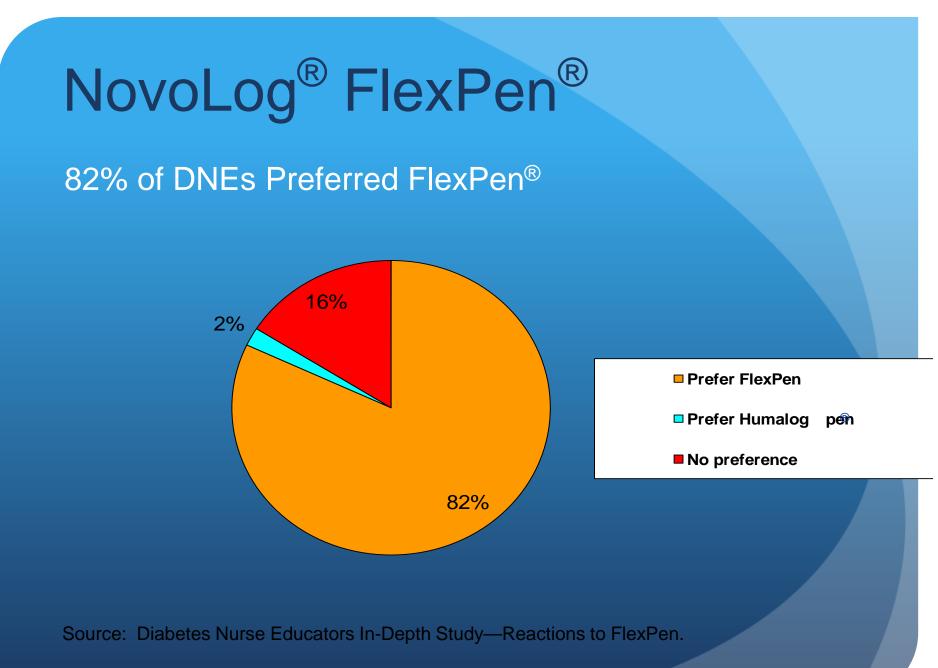
Insulin Storage

- Pens
 - Refrigerated (36-46°F):
 - Expiration date
 - In use
 - Lantus, Apidra solostar: 28 days
 - Levemir: 42 days
 - Novolog: 28 days
 - Novolog Mix 70/30: 14 days
 - Room temperature (59-86°F):
 - Humalog[®] Mix 75/25, 50/50: 10 days
 - 70/30: 10 days
 - NPH: 14 days
 - Lispro: 28 days
- Pens in use should not be refrigerated

Lilly Insulin Pens

Novo Nordisk devices in diabetes care

First pen (NovoPen 1) launched in 1985
 Committed to developing one new insulin administration system per year.



Prefilled Syringe with Flexible Dosing

NovoLog® FlexPen® Prefilled Syringe medin aspart injection (CNA organ)

